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Abstract-The expression for eddy diffusivity in a previous analysis was revised. By using the revised 
expression, good agreement was obtained between the predicted and experimental results for mass transfer 
at Schmidt numbers between 800 and 15,000. 

Both the predicted and experimental results showed that the Sherwood number varies with; power of 
the Schmidt number and about 0.9’power of the Reynolds number at SC = 800-15.000 and Re = 3000- 

80,000. 
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NOMENCLATURE Pr, 

Re, 
coefficient in equation (28) ; 
heat capacity [cal/g”C] ; 
concentration [g-mole/cm3] ; 
dimensionless concentration 

= (c - c,)/(cb - c,); 
molecular diffusivity for mass [cm*/s] ; 
diameter of eddy particle [cm] : 
Faraday constant [coulomb/g-mole] ; 
friction factor ; 

U, 

u, 

half width of two-dimensional channel u*, 

[cm1 ; 4 
dimensionless half width of two- 
dimensional channel = Hu*/v ; X, 
heat transfer coefficient [cal/cm*s”C] ; y, 
dimensionless heat transfer coefficient 
= h/&u, ; Y+? 

limiting current density [A/cm*] ; 
mass transfer coefficient [cm/s] ; + 

Yl 7 
dimensionless mass transfer coeffkient 
= K/u,; 
constant in equation (13b); y*+, 
dimensionless entry length of mass 
transfer = Lu,/v ; 

mixing length [cm] ; 
+ 

YB > 

Nusselt number ; 
exponent in equation (18) ; 

1705 

Prandtl number ; 
Reynolds number ; 
Schmidt number ; 
Sherwood number ; 
temperature [“Cl ; 
dimensionless temperature 

= (T- T,)/(& - L); 
time-smoothed velocity in x-direction 

[cm/s] ; 
intensity of fluctuating velocity in 
x-direction [cm/s] ; 
friction velocity [cm/s] ; 
intensity of fluctuating velocity in 
y-direction [cm/s] ; 
distance in the flow direction [cm] ; 
distance perpendicular to the wall 

[cm] ; 
dimensionless distance from the wall 
= yub/v; 
boundary between the region where 
equation (28) is valid and that where 
equation (29) is valid ; 
boundary between ‘the region where 
equation (29) is valid and that where 
equation (30) is valid ; 
boundary between the region where 
equation (34) is valid and that where 
equation (35) is valid ; 
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YH+T boundary between the region where Sherwood number varies with Pr+ or SC”, 
equation (31) is valid and that where while Deissler’s equation leads to an exponent 
equation (32) is valid. of $ 

Greek symbols 

T+, 
molecular diffusivity for heat [cm’/s] ; 
dimensionless thickness of boundary 
layer ; 

&D? eddy diffusivity for mass [cm’/s] ; 

&HI eddy diffusivity for heat [cm2/s] ; 

hi* eddy diffusivity for momentum 

[cm’/s] ; 
VH, equation (14a) ; 

vhf, equation (13a) ; 
K, KI, K2, constants; 
\, 

d, 

kinematic viscosity [cm2/s] ; 
density [g/cm31 ; 

LL 
hd%i ; 
equation (14b) ; 

(P M, equation (13b). 

Measurements of heat or mass transfer rates 
have been made by many investigators at large 
Prandtl or Schmidt numbers, but most of their 
experimental results are too scattered and 
different from each other to determine the effect 
of the Prandtl or Schmidt number on the 
transfer rates. 

Recently Mizushina et al. [3] measured the 
eddy diffusivities for heat using a Mach- 
Zehnder interferometer at Pr = 6-40 and also 
presented [4] an analytical expression for the 
ratio of the eddy diffusivities for heat and 
momentum transfer by modifying the mixing 
length theory. 

Subscripts 
b, 
W, 

bulk ; 
wall. 

This paper reports the comparison between 
the mass transfer rates obtained experimentally 
and those predicted by using the revised 
expression of the previous analysis for the eddy 
diffusivity, and discusses the effect of the Prandtl 
and Schmidt number on the heat and mass 
transfer coefficients respectively. 

INTRODUCTION 

NUMEROUS equations have been proposed for 
predicting the heat or mass transfer rates be- 
tween a pipe wall and a fully developed turbulent 
flow. Most of them are adequate only for 
Prandtl or Schmidt numbers of unity or less. 
Their inadequacy at large Prandtl and Schmidt 
numbers is principally caused by the expressions 
used for the eddy diffusivity in the region very 
close to the wall. This region is important 
because of the extremely large temperature or 
concentration gradients at large Prandtl or 
Schmidt numbers. 

ANALYSIS 

For a steady, fully developed rectilinear flow 
between parallel plates, the time-smoothed 
temperature and concentration equations may 
be written as 

Regarding the eddy diffusivity in this region, 
the semiempirical relationships of Lin et al. [l] 
and of Deissler [2] are well-known, but their 
resulting equations for the heat or mass transfer 
rates differ in the predicted effect of the Prandtl 
or Schmidt number on the transfer rate. The 
equation of Lin et al. predicts that at large 
Prandtl or Schmidt numbers the Nusselt or 

It may be assumed that the convection terms 
on the left sides of equations (1) and (2) can be 
neglected; in other words, the heat or mass 
flux is assumed to be constant at any value of y. 
This assumption may not cause serious errors 
at large Prandtl or Schmidt numbers because 
the temperature or concentration gradients are 
unimportant in the region far from the wall. 
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With this assumption, equations (1) and (2) 
may be rewritten in dimensionless form as 

o=-&[(;++J (3) 

o+[(;+$$]. (4) 

Boundary conditions are 

T* = O,c* = 0 at y+ = 0 (5) 

T* = 1, c* = 1 at y+ = co (6) 

The values of T* and c* at y+ = co are essen- 
tially unity because both temperature and con- 
centration are very nearly constant except in 
the region very close to the wall, and they are 
considered to be the bulk temperature or con- 
centration at large Prandtl or Schmidt numbers. 

Equations (3) and (4) are integrated, with the 
boundary conditions (5) and (6), to be 

).+ 

T* = s dy+ m dy+ 

l/Pr + &H/V is 1,Pr + &H/V 
(7) 

c* = j l,Z-+sD,~l /~l,&dL,,~ (*) 
0 0 

It can be shown from the definitions of the 
heat and mass transfer coefficients that 

If the relation of Ranz and Marshall [5] is 
assumed to apply to the heat transfer from an 
eddy particle to the surroundings, the following 
expressions are obtained. 

&HIV = &lu,v) (14) 

where 

rH = &[I - exp(- WH)l (144 

m 

h+ = 1, s dy+ 
I/Pr + EJV 

(9) & = 

WI2 (f/d (&IV) pr 
12 + 3.64 t( d/r) (l/q-J (EM/v)] Prf (14b) 

0 Thus, to evaluate the eddy diffusivity for heat, 
the functional forms or values of l/d, qM and 
E~/V are required. 

bers, the eddy diffusivities sH and sD must be 
evaluated over a cross section of the flow. 

Mizushina et al. [4] proposed an expression 
for eddy diffusivity for heat by using their 
experimental results of E&J. 

The basic concept of their theory is that a 
spherical eddy particle loses a part of its heat 
and momentum as it travels over a distance 
equal to the mixing length. 

Assuming Newton’s law for the drag force on 
an eddy particle, one obtains the following 
equations : 

EM/V = ‘l&b’) (13) 

where 

ev Pdd - 1 . 1 
rlM = exp CWA + 1 &i (134 

(13’4 

m 

K+=l/ 
s 

dy+ 
I/SC -I- En/V 

(10) 
0 

and the Nusselt number and Sherwood number 
are given by 

Nu = Re,,/f/2 Prh’ (11) 

Sh = ReJf,2 ScKf (12) 

Expressions for eddy diffuusivity 
To evaluate the Nusselt and Sherwood num- 

Assumption jbr I/d. The value of the mixing 
length is assumed to be determined by quantities 
that have local characters of turbulence, such 
as the diameter of the eddy particle, d, and the 
local Reynolds number of turbulence, du/v. 

Thus, 

l/d = fn (du/v). (15) 

If the diameter of the eddy particles is considered 
to be the micro scaIe of turbulence, equation 
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(15) represents the same assumption as that of 
von Karman [6]. 

Moreover, it may be reasonable to consider 
that au/ax z u/d and av/ay % v/l. From the 
continuity equation, one obtains 

lfd cz v/u. (16) 

Substitution of equation (16) into equation (13b) 
gives the result that nM is a constant. 

Therefore, from equations (13) and (15) i/d 
may be considered to have the following 
functionality. 

l/d = Fn &IV). (17) 

The simplest form is 

l/d = K (EJv)““. (18) 

Substitution of equation (18) into equation (14b) 
gives the result, 

& = 

(l/J+J (&&)l -(2’n) Pr _____ 
12 + 3.6 J(~/Q) (&)(“- i)“” Pr+ 

(19) 

Determination of the values of qM and n. In 
the turbulent core, it may be assumed that 
u x u, and one obtains l/d z constant in the 
order of unity from equation (16) i.e. the power 
number l/n in equation (18) is zero. 

Equation (19) is rewritten as 

4” = 
W12hf) h/v) pr 

12 + 3.6 ,/(l/icinJ &M/v)+ Pr+ ’ 

the turbulent core region at large Prandtl 
numbers, the value of lim e is supposed to be 
unity, so the value of qM is taken to be unity. 
The following expression for the ratio of the 
eddy diffusivities is obtained from equations 
(14a) and (21) with qM = 1: 

0 = h [1 - exp (- Wdl. (23) 

The function &, in the turbulent core is given 
by equation (20) with ran = 1. 

In the vicinity of the wall, u and u are con- 
sidered to be proportional to the distance from 
the wall and to the square of the distance, res- 
pectively. Hence from equation (16), one obtains 

l/d cc y. (24) 

By comparing equation (24) with equation (18) 
one obtains the following expression for the 
eddy diffusivity of momentum near the wall. 

%4/v K (Y)“. (25) 

In this region, equation (23) is simplified to 
cr + &, and using equation (25) and the 
simplified form of equation (19) one obtains 

EJV + (Pr/12K2) (E~/v)~-‘~‘“’ a y2”- 2. (26) 

The experimental results of Mizushina et al. 
[3] for the eddy diffusivities of heat in the region 
near the wall shows that +,/v a (Y)~, and hence 
by comparing with equation (26) one obtains 
the result that the value of n is 3. 

Thus, in the region close to the wall, 

(20) 

From equations (13) and (14), the ratio of 
eddy diffusivities for heat and momentum is 

a = EH/% = V&M. (21) 

As seen from equations (14a) and (20) the value 
of ?J~ approaches unity when E~/V increases to 
infinity, and qM is a constant. Hence one 
obtains 

lim a = l/u,. (22) 
EM/V -+ cc 

4% = 
(l/~~~) h/vY Pr 

12 + 3.6 J(1/rc2) (.s,,Jv)* Pr+’ 
(27) 

Eddy diffusivity for momentum. Mizushina et 
al. [8] have presented simple and systematic 
expressions for the eddy diffusivity for momen- 
tum as follows; 

0 5 y+ 5 yl+ &&f/V = A (y’)3 (28) 

Yl+ 5 Y+ 5 Y2+ EM/V = 0.4 Y+ 

(1 - y+/H+) - 1 (29) 

y2+ s y+ 4 H+ EM/V = 0.07 Ht. (30) 
From the experimental results of Mizushina 
et al. [73 for the ratio of the eddy diffusivities in 



TURBULENT HEAT AND MASS TRANSFER 

x10-‘ 

1709 

FIG. 1. Variation of the coefficient A with Reynolds number. 

The values of A are depicted in Fig. 1 which 
shows that the value of A, and hence the eddy 
diffusivity for momentum near the wall, is a 
function of the Reynolds number and the 
values for two-dimensional channel flow and 
circular pipe flow are different. It has a tendency 
to increase with the increase of the Reynolds 
number and approaches a constant value of 
5.23 x 10m4 at very high Reynolds numbers. 
The value of yl+ and y,+/H+ depend slightly 
on Reynolds number and have nearly constant 
values of about 26.3 and 0.23 respectively. 

By using equations (28H30), the numerical 
values of ICY and ICY in equations (20) and (27) 
were computed to fit the experimental results 
of E&J by Mizushina et al. [3]. Thus, finally, 
the following equations were obtained. 

y+ s yH+ 4H = 0~79 Mv)+ fi 
1 + 0.228 (&J/V)+ I+ (31) 

y+ 1 y,+ 4H = 0906glW~) Pr 
1 + 016O(~,/v)+ Pr+; (32) 

l- 

z 
I.? 
z 
> 
3 

10-l - 

-2 10 - 

The values of yH+ at which the values of C& 
calculated by equations (31) and (32) are equal 
each other, are nearly constant at about 25 at 
large Prandtl and Reynolds numbers. 

fi is noted that the-eddy diffusivity for heat in FIG. 2. Comparison of the calculated and measured values 

the region close to the wall is a function of the of eddy diffusivities for heat and mass ; key, o experimental 
data at Pr = 25.8 and Re = 19 400 

Reynolds number because the eddy diffusivity 
. __ calculated values, 

- - - Lin et al. -. . -. - Deissler. 
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for momentum in this region is a function of 
the Reynolds number as shown in Fig. 1. 

If the mechanisms for eddy diffusion of heat 
and mass are assumed to be analogous, equa- 
tions (31) and (32) are applicable to mass transfer 
by using eD and SC instead of cH and Pr. 

Comparison of the calculated eddy diffusivi- 
ties with those measured at Pr = 25.8 by 
Mizushina et al. [3], and at SC = 900 by Lin et 
al., is shown in Fig. 2. There is fairly good agree- 
ment between the calculated and experimental 
results. 

Thus the Nusselt and Sherwood numbers can 
be calculated by substitution of the eddy 
diffusivities for heat or mass obtained by the 
above analysis into equations (9) and (10). 

EXPERIMENTAL METHOD 

The process chosen for this study was reduc- 
tion of ferricyanide ions at a nickel cathode in 
the presence of a large excess of sodium and 
potassium hydroxide. This system has been 
used with good results by many previous investi- 
gators and offers a number of important advan- 
tages. The most significant advantage is that 
surface roughness can be kept very small com- 
pared with the dissolving wall method. This is 
particularly important at large Schmidt num- 
bers because the surface roughness influences 

Potentiostat 

the mass transfer rate significantly in this case. 
The experiments were performed in a rec- 

tangular duct of vinyl chloride, 5 by 50 mm cross 
section and 2 m long. The three nickel cathodes 
398,201 and 52 mm long and 20 mm wide, were 
mounted in series, flush with the upper surface 
in the center of the duct, the anode, 2 m long 
and 50 mm wide, being mounted on the lower 
surface of the duct. The cathodes were made 
narrower than the anode to ensure that the 
limiting current occurred at the cathodes rather 
than at the anode, and to eliminate any effects 
of flow disturbances in the corners of the duct. 

The inlet length required to achieve the fully 
developed velocity profile at the cathode (mass 
transfer section) was about 100 times the 
equivalent diameter of the duct. 

The measurements of mass transfer rates 
were made by a cathode 201 mm long located 
downstream of a 398 mm long cathode. Thus 
the entry length for developing the concentra- 
tion profile was L+ z 104. Hence the measured 
mass transfer coefficient may be considered to 
be a fully developed one. 

The electrolyte solution was recirculated 
through the duct by means of a vinyl chloride 
pump. To prevent the circulating fluid 
from becoming contaminated, vinyl chloride 
plastic valves and pipes were used throughout 

reservoir Manometer 

FIG. 3. Schematic diagram of the apparatus. 
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the system. The experimental apparatus is 
shown schematically in Fig. 3. 

The solution used contained 0.001 h 0.01 M 
of K,Fe(CN), and K,Fe(CN), and 0.1 rr 50 M 
of KOH and NaOH per liter. The concentra- 
tion of ferricyanide ions at the cathode surface 
can be assumed to be zero at the limiting current, 
and the bulk concentration was measured with 
an iodometric titration. 

The mass transfer coefficient is calculated by 
the following equation. 

K = i/Fe,. (33) 

The Reynolds and Schmidt numbers were 
varied from 3000 to 80000 and 800-15 000, 
respectively. The flow rates were measured with 
a calibrated orifice in the pipe. 

EXPERIMENTAL RESULTS 

The experimental data is summarized in 

reasonable agreement with the measured values. 
The variations of K+ with Re are so small 

that the averaged values of the measured K+ 
at various Reynolds numbers are plotted against 
Schmidt number in Fig. 5. For comparison with 
the predictions of the present analysis, of 
Deissler [2], and of Lin et al. [l], the experimen- 
tal data of Harriott et al. [9] and Hubbard et 
al. [lo] are also plotted in Fig. 5. The predictions 
of the authors lit the experimental results of 
the authors and Hubbard et al. quite well and 
are in good agreement with the prediction of 
Lin et al., but in poor agreement with that of 
Deissler. The experimental results of Harriott 
et al. are slightly greater than the present pre- 
diction, probably because of the effect of the 
surface roughness. 

The experimental results at Schmidt numbers 
of 15 100 and 782 are plotted as the Sherwood 
number vs. the Reynolds number in Fig. 6. 
and compared with the present prediction, the 

10-a , , , , , I I I IllIll 

” ” 
0 0 0 0 “S 

SC=782 

,o- SC=1500 

i 

1 ,o c n n n - c) 0 lj SC-3600 

! - sc=Q “O 1 
10-1 I I Ill/ I I I IllIll 

10L IO5 

Re 

FIG. 4. Variation of K+ with Reynolds number. 

Table 1. The variations of K+ with Re are equation of Sieder and Tate [ 111, the analogy 
plotted in Fig. 4, and compared with the pre- of Chilton and Colbum [ 121, and the prediction 
diction by equation (10) with the eddy diffusivity of Deissler. The experimental data shows that 
for mass presented in this analysis. The pre- the Sherwood number varies with about 0.9 
dicted values of K+ have a tendency to decrease power of the Reynolds number at large Schmidt 
with decreasing Reynolds numbers because of numbers, in reasonable agreement with the 
the dependence of EJV on Re, and are in present prediction. It also appears from Fig. 6 
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Table I 

SC 

631 

782 

981 

1200 

1500 

Re 

32,500 638 7.40 

14,600 465 6.77 
17,500 552 6.85 
20,800 681 7-26 
24,900 810 7 39 
30,400 960 7-35 
36,800 1130 731 
44,200 1310 7.23 
49,900 1450 7.25 
54,900 1550 7.09 
60,600 1700 7 16 
66,200 1850 7.15 

82,400 2230 7 14 

36,000 891 6.27 

22,000 669 5.08 

9310 399 4-49 
10,100 456 477 
11,400 490 465 
12,600 538 4.68 
14,300 594 4.62 
17,300 709 4.66 
19,300 770 4.61 
22,ooo 850 452 
25.400 960 4 56 

5630 
6080 
7320 
8600 

18,200 
13,200 
14.500 
15,900 
20,200 
26,800 
35,600 
41,000 
44,800 
57.400 

310 3-42 
317 3-27 
374 3.28 
444 3.38 
506 3.31 
631 3.30 
685 3.30 
748 3 33 
919 3 32 

1170 3.28 
1500 3.22 
1790 3.48 
1820 3-17 
2180 3 16 

5760 359 2.52 
6090 387 2.56 
6760 426 2.67 
8830 523 2 60 

10,200 623 2.68 
12,400 730 2.68 
15,000 859 2-68 
17,600 984 2.67 
20,200 1110 2-68 
23,200 1270 2.70 
27,500 1470 2.70 
36,000 1860 2.64 
44,000 2210 2.65 

5480 4520 
5500 
6620 
7900 
9420 

10,900 
12,600 
13,400 
15,600 
18,400 
24,000 

9170 5050 411 1 30 
5450 432 1.27 
6460 514 1.31 
7470 613 l-37 
8440 683 1-37 

10,400 848 1.42 
12,700 1030 I.44 
14.700 1160 1.44 
17,700 1370 1.44 
22,500 1720 I .46 

15,100 3570 377 O-980 
3800 403 0.990 
4600 478 0.994 
5280 535 0,988 
6200 616 0987 
7200 723 102 
7950 785 I.01 
8960 884 1.03 

10,100 993 l-04 
12,300 1170 I.02 
14.000 1320 1 04 
15,500 1470 l-05 

Sh K+ * IV 

332 I 93 
396 I 93 
459 191 
539 1.92 
642 1.96 
728 I.95 
819 1.93 
883 I .99 

1020 1.99 
1170 l-98 
1490 200 
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i 0 Present experiment 

&_ Hubbard et (I/. 

0 Harriott eta/. 

FIG. 5. Variation of K+ with Schmidt number. 

Present experiment 

- Present analysis 

---_ Sieder and Tate 

_ _... _... Chilton and Colburn 

/’ ----- Deissler 

I I Illlll I I I I1llll 

loL IO5 

Re 

FIG. 6. Variation of Sherwood number with Reynolds 
number. 

that the other three predictions apparently fail from the fact that the eddy diffusivities near the 

to represent the experimental results. wall vary with the n-th power of the distance 
from the wall. Hubbard et al. [lo] concluded 

DISCUSSIONS from their experimental results that the value of 
It is generally accepted that the exponent l/n n was 3, but Son et al. [13] obtained the eddy 

in the relation Nu CC Pr”” or Sh a SC"" follows diffusivity expression at y+ -+ 0 as E&I = 
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0.00032 (Y’)~ from their experiments on the 
dependence of SC on Sh, and on the effect of the 
length of the transfer section on the rate of the 
mass transfer. 

On the other hand, the eddy diffusivity of the 
present analysis shows that &n/v cdy’)“at y+ + 0, 
but the calculated value of K+ varies with SC-*, 
i.e. Sh cc SC* at large Schmidt numbers as shown 
in Fig. 5. 

To discuss this problem further, the eddy 
diffusivity expressions of the present work may 
be simplified as follows. 

Since the case considered is at large Prandtl 
or Schmidt numbers, only the equations (28) 
and (31) which are valid in the vicinity of the 
wall, are discussed here. 

In the immediate vicinity of the wall, E~/V is 
very small. Hence from equations (23) and (31) 
the expression of the eddy diffusivity for heat is 
given by the following simple equation. 

Y+ 5 YBf EJV = 0.0279 A* Pr (y’)“. (34) 

In the region where the magnitude of the 
product of Pr and EJV is very large compared 
with unity, E&J is given by 

Y+ 2 Y,+ &H/V = A (y ‘)? (35) 
Yi is located at a boundary of two regions. 
where equations (34) and (35) are valid respec- 
tively, and is obtained by equating these two 
equations as follows, 

YB+ = l/(0.0279 A* Pr) (36) 

The value of y, + is proportional to Pr- ‘, and 
depends slightly on the Reynolds number 
because of the dependence of A on Re as shown 
in Fig. 1. 

The thickness, S+, of the thermal boundary 
layer is defined simply as that which satisfies 
the following conditions : 

%/V I =,).+ =6+ = 102/Pr. (37) 

When equation (37) is applied to equation (7) 
the value of the integrand of equation (7) i.e. 

1 

1/pvG& 

becomes Pr/(l + 102) + 0.01 Pr at yf = 6+, 
which is only 1 per cent of the value at y+ = 0, 
i.e. Pr. Therefore, one can assume that 

b 0 

and hence the value of T* at y + = 6’ becomes 
nearly unity. Combining equation (37) with 
equations (34) or (35) one obtains the thickness 
of the boundary layer as 

6+ s ys+ 6+ = 7.74 A-+ Pr-+ (39) 

l?+ 2 ys+ 6’ = 4.64 A-+ Pr-$. (40) 

In Fig. 7, ys+ and 6+ are plotted against Prandtl 
number at Re = 104. As shown in Fig. 7, there 
are two regions where the eddy diffusivity varies 
with (Y’)~ and (Y+)~ in the thermal boundary 
layer at large Prandtl numbers. The eddy 
diffusivity for heat varies with (Y’)~ in almost 
all parts of the boundary layer at Pr > 103. 
Hence the transfer coefficient is expressed 
approximately as 

Pr > lo3 h+ + 1 
15 

dY+ 
1/Pr + Am 

0 

= 0.827 A* Pr-4. (41) 

Similarly, for mass transfer, 

SC > lo3 K+ = 0,827 A+ SC-+. (42) 

The conclusion of the discussion is that the 
relation Kt cc (SC)-* at large Schmidt numbers 
does not indicate that E&J cc (Y’)~ at y+ + 0, 
but that the eddy diffusivity varies with (Y’)~ 
in the almost all parts of the boundary layer. 

CONCLUSIONS 

1. By using the revised expression for eddy 
diffusivity from the previous analysis, good 
agreement was obtained between the predicted 
and experimental results of mass transfer at 
Schmidt numbers between 800 and 15,000. 
2. Both the predicted and experimental results 
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IO 102 103 104 

Pr 

FIG. 7. Variation of 6+ and yB+ with Prandtl number at 
Re = 104. 

show that the Sherwood number varies with 
the + power of the Schmidt number and about 
the 0.9 power of the Reynolds number at large 
Schmidt numbers. 
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TRANSFERTS THERMIQUE ET MASSIQUE PAR TURBULENCE ENTRE PAR01 ET 
COURANTS FLUIDES POUR DES NOMBRES DE PRANDTL ET SCHMIDT GRANDS 

R&m&On a revu l’expression de la diffusion par turbulence dans une analyse anterieure. En utilisant 
cette expression corrigite, on a obtenu un bon accord entre les r&hats prMits et ceux experimentaux 
pour un transfert massique a des nombres de Schmidt compris entre 800 et 15 000. 

Les resultats predits et experimentaux ont montre que le nombre de Sherwood varie selon la puissance 
+ du nombre de Schmidt et a peu pres selon la puissance 0,9 du nombre de Reynolds quand SC = 800 - 

15000et Re = 3000 z 8000 

TURBULENTER WARME- UND STOFFtiBERGANG ZWISCHEN WAND UND 
STRijMUNG BEI HOHEN PRANDTL- UND SCHMIDT-ZAHLEN 

Zusammenfassung-Der Ansatz fiir den zusatzlichen Austauschkoeffizienten aus einer friiheren Arbeit 
wurde verbessert. Mit diesem verbesserten Ansatz ergab sich eine gute Ubereinstimmung zwischen den 
berechneten und den experimentellen Ergebnissen fiir den Stoffiibergang bei Schmidt-Zahlen zwischen 
8OOund 15000. 

Die rechnerischen und die experimentellen Ergebnisse. zeigen, dass sich die Sherwood-Zahl mit der 
Potenz f der Schmidt-Zahl und der Potenz von etwa @9 der Reynolds-Zahl Indert fur SC = 800 

15000,undRe=3000...80000. 

TYPEYJIEHTHbIfl IIEPEHOC TEIIJIA II MACCbI ME%aY CTEHHOm II 
IIOTOHAMM ~HflHOCTH IIPH BOJIbIIIBX %ICJIAX IIPAHjJTJIH M ILHiHflTA 

kiEOT8I(IiW--nepeCMOTpeH0 BbIpameme BKxpeBol ~ii#4ysmi, npeAnomennoe B npenbt- 
fiymett cTaTbe. C noMombro ~0B0r0 BbIpaweHm nonyseH0 xopoluee coroauie MemAy pac- 

&?THblMIl II 3KCnepHMeHTaJlbHbIMM pe3yJlbTaTaMI4 AJIX IIepeHOCa MaCCbl npki qMCJIaX UMHATa, 

paBHbIti 800 II 15 OtI. 
PaCY~THbIeH3KCnepIlMeHTanbHbIepe3ynbTaTblnOKa3anll,sTO~HCnO mepByAaIl3MeHReTCH 

KaK 4HCJIO mMEiATa B CTetIeHIl-& M 9HCJIO PetiHOJIbACa B CTeneHHo$ IIpH SC = 800 w 15000 
nRe=3000-80000. 


